
Summary of Circuits Team’s Activities—Fall 2007
Steven Gilson, Jay Dev Mahadevan, Abraham Cantwell

PREPARED BY: Steve Gilson, Abraham

Cantwell, Jaydev Mahadevan

OBJECTIVES:

1. Design and implement an optical
encoder system to measure the angular
velocity of each wheel for SpongeBob

2. Design and implement sonar sensors
on SpongeBob and transmit data to ITX

3. Interface the Gladiator Technologies
inertial measurement unit with Matlab
for use on SpongeBob or Gladiator

DETAILED DESCRIPTION

OPTICAL ENCODER SYSTEM
OBJECTIVES:

1. Construct four optical encoder sensors
for implementation on SpongeBob’s
wheels

2. Use a cost-effective design for the
encoder circuits

3. Deliver the completed encoders to the
Frame Team for implementation

An optical encoder sensor was to be configured
on each wheel to provide feedback to the main
computer of each wheel’s angular velocity. This
allowed the computer to verify that the robot is
moving at the correct speed and in the correct
direction. Each encoder consisted of an encoder
wheel, two IR sensors (IR LED and photodiode in
one chip) and external resistors and capacitors.
The circuit biased the IR LED at the correct
operating point and included a pull-up resistor
for the circuit output. The output was driven
low by the IR sensor when the white segments
of the encoder wheel were detected. The circuit
design was provided by Vikas Reddy from M&AE
378: Mechatronics.

At first a custom printed circuit board (PCB) was
designed for these circuits. This PCB was to fit
inside each wheel of the robot and implement
the encoder circuit. Unfortunately, after
completing the design and parts list for this PCB,
it was determined to be too expensive to have
the boards fabricated.

The low cost solution was to construct each
encoder circuit on a small breadboard as was
done in the Mechatronics lab. Four fully-
functional encoder boards were assembled and
tested. They were then provided to Vikas Reddy
for implementation on SpongeBob.

In the future, for the Gladiator robot, a
commercial off-the-shelf (COTS) encoder system
will most likely be pursued. This would provide
more accuracy and easier integration into the
robot than a custom built solution. However,
the PCB that was originally designed for
SpongeBob can also be adapted to fit into
Gladiator.

SONAR SYSTEM
OBJECTIVES:

1. Determine how the MaxBotix sensors
work and how to integrate them with a
computer

2. Integrate an array of MaxBotix sonar
sensors with the ATmega32

3. Collect and process analog data
4. Pass complete sensor data to the

computer via a serial connection
5. Install the sensors and processing

circuit on SpongeBob

An ATmega32, placed within on the “Mega32”
board provided by Vikas Reddy, formed the core
of the sonar system. Sensors were powered and
grounded through individual connections to the
Vcc and ground on the “Mega32” board. The
analog data pin on each sensor was then
connected directly to the PORTA pins on the
ATmega32. This setup allowed for a total of
eight sensors to be run at a time. If necessary,
additional sensors could be added through an
external multiplexer. Some accommodations
were made for this operation within the
ATmega32’s code but it was never executed due
to the low number of available, operational
sensors (six). However, the system is prepped
for this type of operation if it proves necessary
in the future. Two specific methods of
operation were created, to do a tradeoff
between speed and sensor accuracy.

In the first mode, the internal multiplexer
sequentially stepped through the 8 sensors.
These values were then fed to the internal
analog to digital converter (ADC) which
performed the conversion and temporarily
stored the value in the ATmega32’s memory.
The ATmega32 then stepped to the next pin and
repeated the process. Once a complete read of
all 8 sensors was complete, the data was
concatenated into a string and passed out
through an RS-232 serial connection at a baud
rate of 9600bps. The formatting of this string
was determined by the CS team and was
designed for easy connectivity between the
ATmega32 and the main computer. The specific
formatting was as follows:

&Sensor1;Sensor2;Sensor3;Sensor4;Sensor5;
Sensor6;Sensor7;Sensor8#

This process was free running and continued to
output data approximately every 400 ns when
provided power.

The second mode, while very similar, attempted
to deal with the problem of interference
between the sensors. Because the pings sent by
the MaxBotix sensors were not coded, potential
for interference between sensors was possible.
Initial tests of the system within an enclosed
space suggested that this interference could
substantially degrade the quality of the data.
Accordingly, a system was designed in which
each sensor was powered on only for the period
in which it was being sampled. This was
achieved by powering the sensors directly from
the output pins of the ATmega32 and providing
the necessary code to power and shutdown the
sensors as necessary. Unfortunately, while
increasing accuracy, this system increased the
amount of time finish reading the sensors as it
was necessary to wait until the power to the
sensor stabilized before taking a reading. This
time, multiplied across the eight sensors yielded
a full read time of about 1.5 seconds per cycle.
Conversion and decoding operated the same as
for the first system.

IMU INTERFACE
OBJECTIVES:

1. Read and parse data from the IMU into
Matlab, and store the data for later
processing

2. Ensure parser meets requirements of
Computing Team

The Inertial Measurement Unit is a device that
can calculate its own rotational velocity and
translational acceleration with very high
accuracy and precision. It will be used by the
Minesweeper Computing Team to aid in GPS
tracking and route navigation algorithms for the
robot.

The initial task was to connect the IMU to a
computer and then read the measurements that
the IMU provides using a Matlab script. At a
later date, the Computing Team plans to convert
the Matlab code into C. The IMU connects to a
computer via serial port (RS-232). Basic design
requirements necessitate reliable
communication between the IMU and
processer, so these concerns were addressed
first. As shown in Figure 1, the IMU transmits
115,200 bits/sec, and for each group of 8 bits
transmitted there is 1 stop bit but no parity bit.
These conditions needed to be set as property
values of the variable that controls serial port
communication in Matlab. Also, the serial input
buffer size was set to 50,000 bytes to ensure
that there would be no incoming data memory
overflow. Each time it runs, the script extracts
10 samples worth of data for each
velocity/acceleration field in about 16 ms – the
Computing Team only requires 1 sample every
second, so this should be more than enough.

Arriving data is read in as char (8 bit) values and
then converted into hexadecimal. A message
packet consists of a start byte, followed by the
processed values from the IMU, and finally a
checksum to make certain there were no errors
during transmission. The Matlab script searches
the data sequentially until it finds the start byte
(0x3E for every message) and then parses the
data into its fields, which are received in the
same order each time. Validating the checksum
would have been a good verification step, but
requires binary computation which is difficult in
Matlab but easy to code in C. Thus, it was
decided to leave this to the Computing Team.
Then the data is converted from hexadecimal to

(signed) decimal. The IMU is capable of
detecting rotational velocity and translational
acceleration in the x, y, and z directions, but the
Computing Team only requires acceleration in
the x and y direction and velocity in the z
direction, so those were the only measurements
that were saved. (The Matlab function that
performs all the serial parsing is called
readIMU() and is included in the appendix.)

Some caveats: all acceleration and velocity fields
are 16 bits, but they are received in Little Endian
format (i.e. LSB first). Also, the least significant
bit for the data is weighted as 0.01 deg/sec for
rotational velocity and 0.001 g for translational
acceleration. Furthermore, it was discovered

with much frustration that Matlab cannot detect
signed hexadecimal numbers, so the Circuits
Team had to write its own Matlab function for
converting from signed hexadecimal to signed
decimal format. (This function is called
shex2dec() and is included in the appendix.)

CONTACTS

Gladiator Technologies, Inc.
Technical Support Hotline: 425-391-0229 x223
techsupport@gladiatortechnologies.com

IMAGES

Figure 1: IMU Serial Communication Settings

Figure 2: IMU Message Packet Format

APPENDIX

MATLAB FUNCTION readIMU()

function [accelx_num,accely_num,gyroz_num] = readIMU()

s = serial('COM1');

s.InputBufferSize = 50000; %set buffer to 50000 bytes
s.BaudRate = 115200;
s.DataBits = 8;
s.StopBits = 1;
fopen(s)

[indata,count] = fread(s,1800,'char'); %read data values as char -

1800 bytes

%turn char data into hex
indata_hex = dec2hex(indata);
[rows, cols] = size(indata_hex);

%matrices for storing extracted data
gyro_x = [];
gyro_y = [];
gyro_z = [];
accel_x = [];
accel_y = [];
accel_z = [];
temp = [];

startval = find(indata == 62); %find start byte (3E in hex, 62 in

dec)

%parse data stream
for i = startval(1):18:rows
 gyro_x = [gyro_x; indata_hex(i+3,:),indata_hex(i+2,:)];
 gyro_y = [gyro_y; indata_hex(i+5,:),indata_hex(i+4,:)];
 gyro_z = [gyro_z; indata_hex(i+7,:),indata_hex(i+6,:)];
 accel_x = [accel_x; indata_hex(i+9,:),indata_hex(i+8,:)];
 accel_y = [accel_y; indata_hex(i+11,:),indata_hex(i+10,:)];
 accel_z = [accel_z; indata_hex(i+13,:),indata_hex(i+12,:)];
 temp = [temp; indata_hex(i+15,:),indata_hex(i+14,:)];
end

gyrox_num = cast([],'double');
gyroy_num = cast([],'double');
gyroz_num = cast([],'double');
accelx_num = cast([],'double');
accely_num = cast([],'double');
accelz_num = cast([],'double');
temp_num = cast([],'double');

[datarows datacols] = size(gyro_x);
%convert data from hex to decimal
for i = 1:datarows
 gyrox_num(i,:) = shex2dec(gyro_x(i,:))/100;
 gyroy_num(i,:) = shex2dec(gyro_y(i,:))/100;
 gyroz_num(i,:) = shex2dec(gyro_z(i,:))/100;
 accelx_num(i,:) = shex2dec(accel_x(i,:))/1000;
 accely_num(i,:) = shex2dec(accel_y(i,:))/1000;
 accelz_num(i,:) = shex2dec(accel_z(i,:))/1000;
 temp_num(i,:) = shex2dec(temp(i,:))/100;

end

%convert from g's to m/s^2
accelx_num = accelx_num * 9.80665;
accely_num = accely_num * 9.80665;

%close serial port
fclose(s)
delete(s)
clear s

MATLAB FUNCTION shex2dec()

%convert signed hex number to decimal
%hexnum should be a string
function decnum = shex2dec(hexnum)

binnum = dec2bin(hex2dec(hexnum)); %get binary number from hex
l = length(binnum);
zerochar = '0';
zerostr = [];
for j = 1:16-l
 zerostr = [zerostr,zerochar];
end
binnum = [zerostr,binnum]; %pad w/ zeros to length 16
decnum = 0;
for i = 1:16 %convert to decimal from binary
 if (i == 1)
 decnum = decnum - 2^(16-1)*str2num(binnum(1));
 else
 decnum = decnum + 2^(16-i)*str2num(binnum(i));
 end
end

